SCM5B35

Linearized 4-Wire RTD Input Modules

Description

In RTD temperature measurement applications requiring a very high level of accuracy, the SCM5B35 4-Wire RTD input module offers a significant advantage over 3-wire measurement techniques (Figure 1). The SCM5B35 measures only the voltage dropped across the RTD and almost completely ignores the resistance or length of the RTD lead wires. The SCM5B34 3-Wire RTD module provides lead resistance compensation, but requires equal lead resistances, while the SCM5B35 does not require matched lead resistances.

Each SCM5B35 RTD input module provides a single channel of RTD input which is filtered, isolated, amplified, linearized, and converted to a high-level analog voltage output. This voltage output is logic switch controlled, which allows these modules to share a common analog bus without the requirement of external multiplexers.

The SCM5B modules are designed with a completely isolated computer side circuit which can be floated to ±50V from Power Common, pin 16. This complete isolation means that no connection is required between I/O Common and Power Common for proper operation of the output switch. If desired, the output switch can be turned on continuously by simply connecting pin 22, the Read-Enable pin, to I/O Common, pin 19.

RTD excitation is provided from the module by a precision current source. The excitation current is available on two leads which are separate from the two input signal measuring leads. The excitation current does not flow in the input signal leads, which allows RTD measurement to be totally independent of lead resistance. The excitation current is very small (0.25mA for 10Ω Pt and 12Ω Ni and 1.0 mA for 10Ω Cu) which minimizes self-heating of the RTD.

Signal filtering is accomplished with a six-pole filter which provides 95dB of normal-mode rejection at 60Hz and 90dB at 50Hz. Two poles of this filter are on the field side of the isolation barrier, and the other four are on the computer side. After the initial field-side filtering, the input signal is chopped by a proprietary chopper circuit. Isolation is provided by transformer coupling, again using a proprietary technique to suppress transmission of common mode spikes or surges. The module is powered from +5VDC, ±5%.

A special input circuit on the SCM5B35 modules provides protection against accidental connection of power-line voltages up to 240VAC.

Features

- Interfaces to 100Ω Platinum, 10Ω Copper, or 120Ω Nickel RTDs
- True 4-Wire Input
- Linearizes RTD Signal
- High-Level Voltage Output
- 1500Vrms Transformer Isolation
- ANSI/IEEE C37.90.1 Transient Protection
- Input Protected to 240VAC Continuous
- 160dB CMR
- 95dB NMR at 60Hz, 90dB at 50Hz
- CSA C/US Certified
- CE and ATEX Compliant
- Mix and Match SCM5B Types on Backpanel

Figure 1: SCM5B35 Block Diagram
Specifications

Typical at $T_a = +25^\circ C$ and $+5V$DC power

<table>
<thead>
<tr>
<th>Module</th>
<th>SCM5B35</th>
</tr>
</thead>
</table>
| **Input Range Limits** | $-200^\circ C$ to $+850^\circ C$ (100Ω Pt)
$-80^\circ C$ to $+320^\circ C$ (120Ω Ni)
$-100^\circ C$ to $+260^\circ C$ (10Ω Cu) |
| **Input Resistance** |
Normal: 50Ω
Power Off: 40Ω
Overload: 40Ω
Input Protection: Continuous
Transient: 240V RMS max |
| **Sensor Excitation Current** |
100Ω Pt, 120Ω Ni
10Ω Cu
Lead Resistance Effect: 0.0005\circC2/(Ω)
CMV, Input to Output: ANSI/IEEE 37.90.1 |
| **Power Supply Voltage** |
$+5V$DC $\pm 5\%$
$30mA$
$\pm 0.2^\circ C$/V
$\pm 0.5^\circ C$/V |
| **Environmental** |
Operating Temperature Range: $-40^\circ C$ to $+85^\circ C$
Storage Temperature Range: $-40^\circ C$ to $+85^\circ C$
Relative Humidity: 0 to 95% Noncondensing
EMissions EN61000-6-4: RF
ESD, EFT: |

Ordering Information

<table>
<thead>
<tr>
<th>Model</th>
<th>Input Range</th>
<th>Output Range†</th>
<th>Accuracy‡</th>
</tr>
</thead>
</table>
| SCM5B35-01 | $-100^\circ C$ to $+100^\circ C$
($-148^\circ F$ to $+212^\circ F$) | 3, 4 | $\pm 0.12^\circ C$ |
| SCM5B35-02 | $0^\circ C$ to $+100^\circ C$
($+32^\circ F$ to $+212^\circ F$) | 3, 4 | $\pm 0.06^\circ C$ |
| SCM5B35-03 | $0^\circ C$ to $+200^\circ C$
($+32^\circ F$ to $+392^\circ F$) | 3, 4 | $\pm 0.12^\circ C$ |
| SCM5B35-04 | $0^\circ C$ to $+600^\circ C$
($+32^\circ F$ to $+1112^\circ F$) | 3, 4 | $\pm 0.36^\circ C$ |
| SCM5B35-05 | $-100^\circ C$ to $+200^\circ C$
($-148^\circ F$ to $+392^\circ F$) | 3, 4 | $\pm 0.18^\circ C$ |
| SCM5B35C-01 | $0^\circ C$ to $+120^\circ C$
(100Ω at $0^\circ C$)
($+32^\circ F$ to $+248^\circ F$) | 3, 4 | $\pm 0.23^\circ C$ |
| SCM5B35C-02 | $0^\circ C$ to $+120^\circ C$
(100Ω at $25^\circ C$)
($+32^\circ F$ to $+248^\circ F$) | 3, 4 | $\pm 0.23^\circ C$ |
| SCM5B35C-03 | $0^\circ C$ to $+160^\circ C$
(100Ω at $0^\circ C$)
($+32^\circ F$ to $+320^\circ F$) | 3, 4 | $\pm 0.32^\circ C$ |
| SCM5B35N-01 | $0^\circ C$ to $+300^\circ C$
($+32^\circ F$ to $+572^\circ F$) | 3, 4 | $\pm 0.23^\circ C$ |

RTD Standards

<table>
<thead>
<tr>
<th>Type</th>
<th>Alpha Coefficient</th>
<th>DIN</th>
<th>JIS</th>
<th>IEC</th>
</tr>
</thead>
<tbody>
<tr>
<td>100Ω Pt</td>
<td>0.00385</td>
<td>DIN 43760</td>
<td>JIS C 1604-1989</td>
<td>IEC 751</td>
</tr>
<tr>
<td>120Ω Ni</td>
<td>0.00672</td>
<td>0.004274</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Output Ranges Available

<table>
<thead>
<tr>
<th>Output Range</th>
<th>Part No. Suffix</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.0V to $+5V$</td>
<td>NONE</td>
<td>SCM5B35-01</td>
</tr>
<tr>
<td>4.0V to $+10V$</td>
<td>D</td>
<td>SCM5B35-01D</td>
</tr>
</tbody>
</table>

Notes:

*Contact factory or your local Dataforth sales office for maximum values.

(1) \circ refers to the resistance in one lead.
(2) Includes conformity, hysteresis and repeatability.
(3) Conformity error is $\pm 0.05^\circ C$ Span for SCM5B35N-01.