

MAQ®20
Industrial Data Acquisition

and Control System

MA1070

MAQ®20 C API User Manual

MA1070 MAQ®20 C API User Manual

ii

MAQ®20 C API User Manual
MA1070 Rev. A – March 2024
© 1984 – 2024 Dataforth Corporation. All Rights Reserved.
ISO9001:2015-Registered QMS

The information in this manual has been checked carefully and is believed to be accurate; however,
Dataforth assumes no responsibility for possible inaccuracies or omissions. Specifications are subject to
change without notice.

The information, tables, diagrams, and photographs contained herein are the property of Dataforth
Corporation. No part of this manual may be reproduced or distributed by any means, electronic,
mechanical, or otherwise, for any purpose other than the purchaser’s personal use, without the express
written consent of Dataforth Corporation.

MAQ®20 is a registered trademark of Dataforth Corporation.
ReDAQ® is a registered trademark of Dataforth Corporation.
LabVIEW™ is a trademark of National Instruments Corporation.
Modbus® is a registered trademark of the Modbus Organization, Inc.
Windows® and Visual Studios are registered trademarks of Microsoft Corporation.

https://www.dataforth.com/certifications-compliance

MA1070 MAQ®20 C API User Manual

 iii

Table of Contents

1.0 System Features ... 1

2.0 System Description and Documentation ... 2

3.0 Introduction ... 3

4.0 Usage and Source Files .. 4

5.0 USB Functionality ... 5

6.0 System and Module Initialization .. 5

7.0 Direct Reading and Writing of Registers ... 7

8.0 Reading and Writing Channel Data .. 7

9.0 Freeing Memory .. 8

10.0 Example Code .. 8

MA1070 MAQ®20 C API User Manual

iv

About Dataforth Corporation

“Our passion at Dataforth Corporation is designing, manufacturing, and marketing the best possible signal
conditioning, data acquisition, and data communication products. Our mission is to set new standards of
product quality, performance, and customer service.” Dataforth Corporation, with more than a quarter
century of experience, is the worldwide leader in Instrument Class® Industrial Electronics – rugged, high
performance signal conditioning, data acquisition, and data communication products that play a vital role
in maintaining the integrity of industrial automation, data acquisition, and quality assurance systems. Our
products directly connect to most industrial sensors and protect valuable measurement and control
signals and equipment from the dangerous and degrading effects of noise, transient power surges,
internal ground loops, and other hazards present in industrial environments.

Dataforth spans the globe with more than 50 International Distributors and US Representative
Companies. Our customers benefit from a team of over 130 salespeople highly trained in the application
of precision products for industrial markets. In addition, we have a team of application engineers in our
Tucson factory ready to solve any in-depth application questions. Upon receipt of an RFQ or order, our
Customer Service Department provides fast one-day delivery information turnaround. We maintain an
ample inventory that allows small quantity orders to be shipped from stock.

Dataforth operates under an ISO9001:2015 quality management system.

Contacting Dataforth Corporation

Contact Method Contact Information

E-Mail:
 Technical Support

support@dataforth.com

Website: www.dataforth.com

Phone: +1-520-741-1404 and toll free +1-800-444-7644

Fax: +1-520-741-0762

Mail:
Dataforth Corporation
3331 E. Hemisphere Loop
Tucson, AZ 85706 USA

Errata Sheets

Refer to the Technical Support area of Dataforth’s website (www.dataforth.com) for any errata information
on this product.

https://www.dataforth.com/certifications-compliance
mailto:support@dataforth.com
http://www.dataforth.com/
http://www.dataforth.com/

MA1070 MAQ®20 C API User Manual

 v

MA1070 MAQ®20 C API User Manual

 Page 1 of 18

1.0 System Features

The MAQ®20 Data Acquisition System encompasses more than 25 years of design excellence in

the process control industry. It is a family of high performance, DIN rail mounted, programmable,

multi-channel, industrially rugged signal conditioning I/O and communications modules.

Instrument Class Performance

• ±0.035% Accuracy

• Industry leading ±0.3°C CJC Accuracy over full operating temperature range

• Ultra-low Zero and Span Tempco

• Over-range on one channel does not affect other channels

• 1500Vrms Channel-to-Bus Isolation

• 240Vrms Continuous Field I/O Protection

• ANSI/IEEE C37.90.1 Transient Protection

• Ventilated Communications and I/O Modules

• Industrial Operating Temperature of -40°C to +85°C

• Wide Power Supply Range of 7-34VDC

• CE Compliant

• UL/cUL (Class I, Div 2, Groups A, B, C, D) Compliant, file E232858

• ATEX Compliance pending

Industry Leading Functionality

• The system is a Modbus Server and can be operated remotely with no local PC

• Up to 4GB of logged data can be transferred via FTP during real-time acquisition

• Up to 24 I/O modules, or 384 channels, per system, per 19” rack width

• Per-channel configurable for range, alarms, and other functions

• Backbone mounts within DIN rail and distributes power and communications

• System firmware automatically registers the installation and removal of I/O modules

• I/O modules can be mounted remotely from the Communications Module

• Equal load sharing power supply modules allow for system expansion

• Hot Swappable I/O modules with Field-side pluggable terminal blocks on most models

• Sophisticated package enables high density mounting in 3U increments

• DIN Rail can be mounted on a continuous flat panel or plate

MA1070 MAQ®20 C API User Manual

Page 2 of 18

Distributed Processing Enables Even More Functionality

• Output modules are programmable for user-defined waveforms

• Discrete I/O modules have seven high level functions:

➢ Pulse Counter

➢ Frequency Counter

➢ Waveform Measurement

➢ Time Between Events

➢ Frequency Generator

➢ PWM Generator

➢ One-Shot Pulse Generator

Multiple Software Options

• Free Configuration Software

➢ ReDAQ Shape Graphical HMI Design & Runtime Solution

• Intuitive Graphical Control Software

➢ ReDAQ Shape Graphical HMI Design & Runtime Solution

➢ Python API

➢ C API

➢ OPC Server

➢ LabView VIs

2.0 System Description and Documentation

A MAQ®20 Data Acquisition System must have as a minimum a Communications Module, a

Backbone, and one I/O Module. Examples include:

 MAQ20-COMx Communications Module with Ethernet, USB and RS-232 or RS-485 Interface

 MAQ20-DIOx Discrete Input / Output Module

 MAQ20-xTC Type x Thermocouple Input Module

 MAQ20-mVxN, -VxN Voltage Input Module

 MAQ20-IxN Process Current Input Module

 MAQ20-IO, -VO Process Current Output and Process Voltage Output Module

 MAQ20-BKPLx x Channel System Backbone

Refer to www.dataforth.com/maq20.aspx for a complete listing of available modules and

accessories.

http://www.dataforth.com/model.view.aspx?modelid=2602
http://www.dataforth.com/model.view.aspx?modelid=2586
http://www.dataforth.com/model.view.aspx?modelid=2554
http://www.dataforth.com/model.view.aspx?modelid=2537
http://www.dataforth.com/model.view.aspx?modelid=2537
http://www.dataforth.com/model.view.aspx?modelid=2578
http://www.dataforth.com/model.view.aspx?modelid=2594
http://www.dataforth.com/maq20.aspx

MA1070 MAQ®20 C API User Manual

 Page 3 of 18

System power is connected to the Communications Module, which in turn powers the I/O modules.

For systems with power supply requirements exceeding what the Communications Module can

provide, the MAQ20-PWR3 Power Supply module is used to provide additional power. When a

MAQ®20 I/O module is inserted into a system, module registration occurs automatically, data

acquisition starts, and data is stored locally in the module. The system is based on a Modbus

compatible memory map for easy access to acquired data, configuration settings, and alarm limits.

Information is stored in consistent locations from module to module for ease of use and system

design.

MAQ®20 modules are designed for installation in Class I, Division 2 hazardous locations and have

a high level of immunity to environmental noise commonly present in heavy industrial environments.

MAQ®20 communications modules provide connection between a host computer and a MAQ®20

Data Acquisition System over Ethernet, USB, RS-485 or RS-232. Ethernet communications use

the Modbus TCP protocol, USB communications are based on the Modbus RTU protocol, and RS-

485 and RS-232 communications use the Modbus RTU protocol. Serial communications over RS-

485 can be either 2-wire or 4-wire. Each MAQ20-COMx module can interface to up to 24 MAQ®20

I/O modules in any combination allowing high channel counts and great flexibility in system

configuration. A removable microSD card can be used by the MAQ20-COMx module to log data

acquired from the MAQ®20 I/O modules.

For details on hardware installation, configuration, and system operation, refer to the manuals and

software available for download from www.dataforth.com/maq20_download.aspx. This includes,

but is not limited to:

MA1036 MAQ®20 Quick Start Guide

MA1040 MAQ®20 Communications Module Hardware User Manual

MA1041 MAQ®20 millivolt, Volt and Current Input Module Hardware User Manual

MA1038 MAQ®20 ReDAQ Shape for MAQ20 User Manual

MA1064 MAQ®20 Python API User Manual

MAQ20-940/-941 ReDAQ Shape Software for MAQ®20 – Developer Version/User Version

MAQ20-952 IPEMotion Software for MAQ®20

3.0 Introduction

The MAQ®20 C API uses an object-oriented approach for communicating with MAQ®20 systems,

which provides an intuitive interface where low-level Modbus commands are hidden from normal

use. Users can focus on solving the measurement problems at hand, instead of re-inventing how to

communicate with modules.

What the C API does for you:

• Communication to MAQ®20 systems from a host PC.

http://www.dataforth.com/maq20_download.aspx
https://www.dataforth.com/media/softwaredownload/maq20/Manuals/MA1036%20Rev%20B%20-%20MAQ20%20Quick%20Start%20Guide.pdf
https://www.dataforth.com/media/pdf/MA1040%20Rev%20B%20-%20MAQ20%20Communications%20Module%20HW%20User%20Manual.pdf
https://www.dataforth.com/media/pdf/MA1041%20Rev%20B%20-%20MAQ20%20mV-V-mA%20Input%20Module%20HW%20User%20Manual.pdf
https://www.dataforth.com/media/pdf/MA1038%20Rev%20B%20-%20ReDAQ%20Shape%20for%20MAQ20%20User%20Manual.pdf
https://www.dataforth.com/media/pdf/MA1064%20Rev%20A%20-%20Python%20API%20User%20Manual.pdf
http://www.dataforth.com/maq20_download.aspx
http://www.dataforth.com/maq20_download.aspx

MA1070 MAQ®20 C API User Manual

Page 4 of 18

• Address offsetting: When a module is registered in a system, addresses are offset by 2000 *

R, where R is the Registration Number. The API allows for absolute addressing and relative

addressing for systems and modules. For module relative addressing methods, 0 to 1999 are

valid addresses.

• Counts to engineering units: The API can convert engineering units to and from raw counts

that the MAQ®20 system uses for representing channel data.

• Mechanisms for freeing memory used by system and module instances.

4.0 Usage and Source Files

Example Visual Studios Project

The Example folder contains a Microsoft Visual Studios 2022 project named Example.sln. This

project is provided for demonstration purposes and for quick usage of the MAQ®20 C API without

any setup required. The C API uses libmodbus and libcurl for backend implementation. These

external library dependencies and all others required by the C API are present within the Example

folder and require no additional configurations for the project to build successfully. Additional

information regarding these external libraries can be found at the following links:

• libcurl: https://curl.se/libcurl/

• libmodbus: https://github.com/stephane/libmodbus/actions

Adding C API Functionality to New or Existing Visual Studios Project

The API Source Files folder contains all dynamic link libraries(.dll), static libraries (.lib), and header

files (.h) required for usage of the C API in different development environments, or in an existing

Visual Studios project.

To begin development with the C API the user will need to point the linker and compiler to the

location of the .dll, .lib, and .h files. This process will vary depending on the environement and

development tools used. The following process was implemented in Visual Studios 2022 using

detailed instructions provided Microsoft:

1. Point the linker and compiler to the .h files used by the MAQ®20 C API.

2. Point the linker to the .lib files.

3. Either manually copy over the .dll files into your project, or add a post-build step to

automatically copy them.

The general steps outlined above were implemented in the provided Example.sln project. Settings

in this project can be used as a reference if needed.

https://curl.se/libcurl/
https://github.com/stephane/libmodbus/actions
https://learn.microsoft.com/en-us/cpp/build/walkthrough-creating-and-using-a-dynamic-link-library-cpp?view=msvc-170#to-create-a-client-app-in-visual-studio

MA1070 MAQ®20 C API User Manual

 Page 5 of 18

5.0 USB Functionality

TCP is the default communication method used by the MAQ®20 C API, with USB and serial also

being supported options. For USB communication to a MAQ®20 system a USBXpress USB to

UART driver is required. In some cases, the USB to UART driver can be overridden by a Windows

automatic install of a different USBXpress driver. If this occurs, proceed with the following

instructions for installation of the correct driver:

1. Download the correct driver from Silicon Labs’ website:

https://www.silabs.com/products/development-tools/software/usb-to-uart-bridge-vcp-drivers.

2. In Windows Device Manager, uninstall the existing USBXpress driver if the MAQ®20 is being

detected within the USB drop-down instead of the COM Port drop-down.

3. The Silicon Labs CP210x device should now appear under the “Other Devices” drop-down

section.

4. Right click on the displayed CP210x device and select the “Update Driver” option.

5. Select the “Browse My Computer for Driver Software” option and then select “Let me pick

from a list of available drivers on my computer”.

6. If a list of categories is provided, select “all categories” and click next.

7. Select the “Have Disk” option and then browse to the location of the .inf file downloaded in

Step 1.

8. Install the driver following instructions on screen.

6.0 System and Module Initialization

MAQ®20 functionalities provided by the C API are imported through the following include

statements:

1. // MAQ20 C API header files
2. #include "MAQ20_System.h
3. #include "MAQ20_Module.h

MAQ20_System.h contains function prototypes used for initializing and interfacing with a MAQ®20

system as a whole. Initialization of the system occurs by way of a call to the init_maq20 function in

this file. When successful, this function returns a pointer to an initialized _maq20 structure for further

usage.

1. // Function prototype for initializing a MAQ20 system
2. maq20* init_maq20(char* protocol, char* ip_address, char* port, int baud_rate, char*
3. parity, char* com_port, maq20_com* com, int timeout, int slave_id);

https://www.silabs.com/developers/usb-to-uart-bridge-vcp-drivers?tab=downloads
https://www.silabs.com/developers/usb-to-uart-bridge-vcp-drivers?tab=downloads
https://www.silabs.com/products/development-tools/software/usb-to-uart-bridge-vcp-drivers

MA1070 MAQ®20 C API User Manual

Page 6 of 18

Individual modules in a MAQ®20 system can then be initialized in a similar manner with a call to the

init_modules function in MAQ20_Modules.h, which returns a pointer to the initialized

_maq20_module structure.

1. // Function prototype for initialization of a single MAQ20 module
2. maq20_module* init_module(maq20_com* com, int registration_number);

Example initialization code for a MAQ®20 system composed of two modules:

 1. // Connect to MAQ20 System through a TCP connection
 2. maq20* system;
 3. system = init_maq20("TCP", "192.168.128.100", "502", 9600, "None",
 4. "COM6", NULL, DEFAULT_TIMEOUT, 16);
 5. if (system == NULL)
 6. return -1;
 7.
 8. // Print module information for the MAQ20 System
 9. for (int i = 0; i < 3; ++i) {
10. maq20_module* module = init_module(system->com, i);
11. if (module == NULL)
12. continue;
13. printf("%s\n", module_information(module));
14. close_module(module);
15. }

Console Output:

 1. MAQ20-COM4
 2. Registration Number: 0
 3. Serial Number -----: S0113207-05
 4. Date Code ---------: D0723
 5. Firmware Version --: F1.81
 6.
 7. MAQ20-VDN
 8. Registration Number: 1
 9. Serial Number -----: S0098692-19
10. Date Code ---------: D1223
11. Firmware Version --: F1.70
12. Input Channels ----: 8
13. Output Channels ---: 0
14.
15. MAQ20-VO
16. Registration Number: 2
17. Serial Number -----: S0120816-01
18. Date Code ---------: D0523
19. Firmware Version --: F1.70
20. Input Channels ----: 0
21. Output Channels ---: 8

In the example code shown above, a system instance was created and initialized upon successfully

connecting to a MAQ®20 system located at IP address 192.168.128.100. Module instances were

then created and initialized in memory with information for each module printed out through a call to

the module_information function.

MA1070 MAQ®20 C API User Manual

 Page 7 of 18

While locating and initializing of modules in a system can be done in this manner, the C API allows

for module initialization to also occur by searching for a module’s name or unique serial number.

The ability to search by module serial number can be useful in cases where multiple modules of the

same type exist within a given MAQ®20 System. The function prototype is as follows:

1. // Function prototypes for locating a module based on its name or unique serial number
2. maq20_module* find_module(maq20* system, char* name_or_sn);

Example calls to this function can be found in the example code located in Section 10.0 of this

manual.

7.0 Direct Reading and Writing of Registers

Read and write requests for single and multiple registers can be issued at the system-level with

absolute addressing, or at the module-level with relative addressing. If desired, a MAQ®20 system

can be controlled and interacted with entirely these low-level methods.

At the system-level the following functions from MAQ20_System.h are used for reading and writing

to absolute register locations specified by the integer type address parameter:

1. // Function prototypes for single and multiple read absolute register(s)
2. int read_register(maq20* system, INT16S* dest, int address);
3. int read_registers(maq20* system, INT16S* dest, int address, int num_regs);
4.
5. // Function prototypes for single and multiple write absolute register(s)
6. int write_register(maq20* system, int address, INT16S value);
7. int write_registers(maq20* system, int address, int num_regs, INT16S values[]);

Relative reading and writing functions defined in MAQ20_Module.h occur at the module-level and

specify the integer parameter address as an offset from the module’s starting address:

 1. // Function prototypes for single and multiple read relative register(s)
 2. int read_register_relative(maq20_module* module, INT16S* dest, int address);
 3. int read_registers_relative(maq20_module* module, INT16S* dest, int address,
 5. int num_regs);
 6.
 7. // Function prototypes for single and multiple write relative register(s)
 8. int write_register_relative(maq20_module* module, int address, INT16S value);
 9. int write_registers_relative(maq20_module* module, int address, int num_regs,
10. INT16S values[]);

8.0 Reading and Writing Channel Data

While reading and writing of individual or multiple channels of data can be done using the methods

outlined in Section 7.0, the MAQ®20 API provides functionalities to make this process easier for

module channel data. MAQ20_Module.h contains function prototypes that allow for single or

multiple channels to be read solely by specifying the module and channel(s) to be operated on.

Function implementations allow for units to be specified in raw counts or engineering units.

MA1070 MAQ®20 C API User Manual

Page 8 of 18

The following functions provide read and write functionalities at the module-level in counts:

1. // Function prototypes for single and multiple read channel(s) in counts
2. int read_channel_data_counts(maq20_module* module, int channel, INT32S* dest);
3. int read_data_counts(maq20_module* module, int start_channel, int num_channels,
4. INT32S dest[]);
5.
6. // Function prototypes for single and multiple write channel(s) in counts
7. int write_channel_data_counts(maq20_module* module, int channel, INT32S data);
8. int write_data_counts(maq20_module* module, int start_channel, int num_channels,
9. INT32S data_set[]);

Function implementations that allow for specifying values in engineering units handle the
conversion of engineering units to counts for write operations and counts to engineering units when
reading:

1. // Function prototypes for single and multiple read channel(s) in engineering units
2. int read_channel_data_eng_values(maq20_module* module, int channel, double* dest);
3. int read_data_eng_values(maq20_module* module, int start_channel, int num_channels,
4. double dest[]);
5.
6. // Function prototypes for single and multiple write channel(s) in engineering units
7. int write_channel_data_eng_values(maq20_module* module, int channel, double data);
8. int write_data_eng_values(maq20_module* module, int start_channel, int num_channels,
9. double data_set[]);

9.0 Freeing Memory

The MAQ®20 C API provides functionalities for freeing memory at system and module-levels.

During program execution, if no further interactions with a previously initialized module are required,

the API provides a functionality for freeing the memory associated it by a call to close_module:

1. // Free memory associated with module instance
2. void close_module(maq20_module* module);

At the end of program execution memory associated with the entire MAQ®20 system should be

freed with a call to close_system:

1. // Free memory associated with system instance
2. void close_system(maq20* system);

When memory is freed at the system-level there is no prior need to free memory at the module-

level as it occurs automatically through the system-level call.

10.0 Example Code

The following code implementation of Example.c from Example.sln demonstrates usage of the

functions described in Sections 6-9 of this manual. The MAQ®20 system used for this example was

composed of a MAQ20-COM4 module with a MAQ20-VDN module registered in slot 1 and a

MAQ20-VO module registered in slot 2. All channels of the MAQ20-VO module were tied to

MA1070 MAQ®20 C API User Manual

 Page 9 of 18

equivelent channel numbers of the MAQ20-VDN module. The code demonstrates initializing the

MAQ®20 system, finding specific modules by name, absolute and relative register operations,

module configuration, and reading of module channels:

 1. #include "MAQ20_System.h"
 2. #include "MAQ20_Module.h"
 3. #include "constants.h"
 4. #include "Example.h"
 5. #include <stdio.h>
 6.
 7. int main() {
 8.
 9. // Connect to MAQ20 System through a TCP connection
10. maq20* system;
11. system = init_maq20("TCP", "192.168.128.100", "502", 9600, "None",
12. "COM6", NULL, DEFAULT_TIMEOUT, 16);
13. if (system == NULL)
14. return -1;
15.
16. // Print module information for the MAQ20 System
17. for (int i = 0; i < 3; ++i) {
18. maq20_module* module = init_module(system->com, i);
19. if (module == NULL)
20. continue;
21. printf("%s\n", module_information(module));
22. close_module(module);
23. }
24.
25. // Locate modules by name and create instances of them
26. maq20_module* vdn1 = find_module(system, “MAQ20-VDN”);
27. maq20_module* vo1 = find_module(system, “MAQ20-VO”);
28.
29. /**
30. * If range information is incorrect, set channel ranges for both
31. * modules to +/-10V and start over with correctly initialized ranges
32. */
33. INT16S vdnCurRange[8] = {9, 9, 9, 9, 9, 9, 9, 9};
34. INT16S voCurRange[8] = {9, 9, 9, 9, 9, 9, 9, 9};
35. INT16S vdnRangeConfig[8] = {3, 3, 3, 3, 3, 3, 3, 3};
36. INT16S voRangeConfig[8] = {0, 0, 0, 0, 0, 0, 0, 0};
37.
38. /**
39. * Read current module range settings
40. * Absolute (system-level) addressing used for reading current MAQ20-VDN ranges
41. * Relative (module-level) addressing used for reading current MAQ20-VO ranges
42. */
43. read_registers(system, vdnCurRange, 2100, 8);
44. read_registers_relative(vo1, voCurRange, 100, 8);
45.
46. // Check if current range matches desired
47. for (int i = 0; i < 8; ++i) {
48. if ((vdnCurRange[i] != vdnRangeConfig[i])||(voCurRange[i] != voRangeConfig[i])){
49. /**
50. * Absolute (system-level) addressing used for MAQ20-VDN range assignment
51. * Relative (module-level) addressing used for MAQ20-VO range assignment
52. */
53. write_registers(system, 2100, 8, vdnRangeConfig);
54. write_registers_relative(vo1, 100, 8, voRangeConfig);
55.
56. // Close system and reinitialize system and modules with corrected ranges
57. close_maq20(system);
58. system = init_maq20("TCP", "192.168.128.100", "502", 9600, "None",
59. "COM6", NULL, DEFAULT_TIMEOUT, 16);
60. vdn1 = find_module(system, “MAQ20-VDN”);

MA1070 MAQ®20 C API User Manual

Page 10 of 18

61. vo1 = find_module(system, “MAQ20-VO”);
62. {
63. {
64.
65. // Set voltage of CH0 of MAQ20-VO module to 2243 counts (+1V)
66. write_channel_data_counts(vo1, 0, 2243);
67.
68. // Set voltage of CH1-CH6 of MAQ20-VO module to +2V, +3V, ..., +7V in counts
69. INT32S voCh1To6Cnts[6] = {2438, 2633, 2828, 3023, 3218, 3413};
70. write_data_counts(vo1, 1, 7, voCh1To6Cnts);
71.
72. // Set voltage of CH7 of MAQ20-VO module to +8.75V (3754 Counts) in ENG units
73. write_channel_data_eng_values(vo1, 7, (double)8.75);
74.
75. // Read voltage of CH0 of MAQ20-VO module in counts and print result
76. INT32S voCh0Cnts = 0;
77. read_channel_data_counts(vo1, 0, &voCh0Cnts);
78. printf("\nMAQ20-VO CH0 (COUNTS): %d\n", voCh0Cnts);
79.
80. // Read voltage of CH1-CH7 of MAQ20-VO module in counts and print result
81. INT32S voCh1to7CountVals[7] = {0, 0, 0, 0, 0, 0, 0};
82. read_data_counts(vo1, 1, 7, voCh1to7CountVals);
83. printf("MAQ20-VO CH1-CH7 (COUNTS): ");
84. print_counts(voCh1to7CountVals, 7);
85.
86. // Read voltage of CHO of MAQ20-VDN module in ENG units and print result
87. double vdnCh0EngVal = 0;
88. read_channel_data_eng_values(vdn1, 0, &vdnCh0EngVal);
89. printf("\nMAQ20-VDN CH0 (ENG): %.4f", vdnCh0EngVal);
90.
91. // Read voltage of CH1-7 of MAQ20-VDN module in ENG units and print result
92. double vdnCh1to7EngVals[7] = {0,0,0,0,0,0,0};
93. read_data_eng_values(vdn1, 1, 7, vdnCh1to7EngVals);
94. printf("\nMAQ20-VDN CH1-CH7 (ENG): ");
95. print_eng(vdnCh1to7EngVals, 7);
96.
97. // Free Memory
98. close_maq20(system);
99.
100. return 0;
101.
102. }

Console Output:

 1. MAQ20-COM4
 2. Registration Number: 0
 3. Serial Number -----: S0113207-05
 4. Date Code ---------: D0723
 5. Firmware Version --: F1.81
 6.
 7. MAQ20-VDN
 8. Registration Number: 1
 9. Serial Number -----: S0098692-19
10. Date Code ---------: D1223
11. Firmware Version --: F1.70
12. Input Channels ----: 8
13. Output Channels ---: 0
14.
15. MAQ20-VO
16. Registration Number: 2
17. Serial Number -----: S0120816-01
18. Date Code ---------: D0523
19. Firmware Version --: F1.70

MA1070 MAQ®20 C API User Manual

 Page 11 of 18

20. Input Channels ----: 0
21. Output Channels ---: 8
22.
23.
24. MAQ20-VO CH0 (COUNTS): 2243
25. MAQ20-VO CH1-CH7 (COUNTS) 2438 2633 2828 2023 3218 3413 3754
26.
27. MAQ20-VDN CH0 (ENG): 0.9985V
28. MAQ20-VDN CH1-CH7 (ENG): 1.9957V 2.9970V 3.9965V 4.9982V 5.9985V 6.9991V 8.7497V

MA1070 MAQ®20 C API User Manual

Page 12 of 18

DATAFORTH WARRANTY

To view the current Dataforth Corporation Warranty, please click on the link below for the Dataforth

Standard Terms and Conditions of Sale Applying to Products Sold by Dataforth Corporation. The

Warranty in its entirety is Section 3. Please check this link periodically for updates.

https://www.dataforth.com/terms-and-conditions-sale

APPLICATION SUPPORT

Dataforth provides timely, high-quality product support. Send an email to support@dataforth.com or call

+1-800-444-7644 TOLL-FREE.

Returns/Repair Policy

All warranty and repair requests should be directed to the Dataforth Customer Service Department at +1-

520-741-1404 or +1-800-444-7644 TOLL-FREE.

If a product return is required, submit a Return Material Authorization (RMA) request by visiting

https://www.dataforth.com.

The information provided herein is believed to be reliable; however, DATAFORTH assumes no

responsibility for inaccuracies or omissions. DATAFORTH assumes no responsibility for the use of this

information, and all use of such information shall be entirely at the user's own risk. Application information

is intended as suggestions for possible use of the products and not as explicit performance in a specific

application. Prices and specifications are subject to change without notice. No patent rights or licenses to

any of the circuits described herein are implied or granted to any third party. DATAFORTH does not

authorize or warrant any DATAFORTH product for use in life support devices and/or systems.

MAQ®20 C API User Manual
MA1070 Rev. A – March 2024
© 1984 - 2024 Dataforth Corporation. All Rights Reserved.
ISO9001:2015-Registered QMS

https://www.dataforth.com/terms-and-conditions-sale
mailto:support@dataforth.com
https://legacy.dataforth.com/rma.aspx
https://www.dataforth.com/certifications-compliance

